coscon.toast_helper module¶
-
class
coscon.toast_helper.AvesBands(data: Dict[str, Union[float, int, str]], validate_schema: bool = True)[source]¶ Bases:
coscon.toast_helper.GenericDictStructurea class describing the bands of Aves.
-
data: Dict[str, Union[float, int, str]]¶
-
schema: ClassVar[dict] = {<class 'str'>: {'NET': Or(<class 'float'>, <class 'numpy.float64'>), 'alpha': Or(<class 'float'>, <class 'int'>, <class 'numpy.float64'>, <class 'numpy.int64'>), 'bandpass': <class 'str'>, 'bandwidth': Or(<class 'float'>, <class 'int'>, <class 'numpy.float64'>, <class 'numpy.int64'>), 'center': Or(<class 'float'>, <class 'numpy.float64'>), 'fknee': Or(<class 'float'>, <class 'numpy.float64'>), 'fmin': Or(<class 'float'>, <class 'numpy.float64'>), 'fwhm': Or(<class 'float'>, <class 'numpy.float64'>)}}¶
-
-
class
coscon.toast_helper.AvesDetectors(data: Dict[str, Optional[Union[str, float, int, np.ndarray]]], validate_schema: bool = True)[source]¶ Bases:
coscon.toast_helper.GenericFocalPlanea class describing the detectors of Aves.
similar to FakeFocalPlane
-
data: Dict[str, Optional[Union[str, float, int, np.ndarray]]]¶
-
plot(width: float = 20.0, height: float = 20.0, fontname: str = 'TeX Gyre Schola', wire: bool = False, wire_TB: bool = False, wire_connectionstyle: Optional[str] = None)[source]¶ Plot the detectors in Azimuthal equidistant projection with orientation.
For wire_connectionstyle, use ‘arc3’ to draw straight-line. See more in https://matplotlib.org/stable/gallery/userdemo/connectionstyle_demo.html#sphx-glr-gallery-userdemo-connectionstyle-demo-py
-
schema: ClassVar[dict] = {<class 'str'>: {'wafer': <class 'str'>, 'pixel': <class 'str'>, 'pixtype': <class 'str'>, 'band': <class 'str'>, 'fwhm': Or(<class 'float'>, <class 'numpy.float64'>), 'pol': And(<class 'str'>, <function <lambda>>), Optional('handed'): Or(None, And(<class 'str'>, <function <lambda>>)), 'orient': And(<class 'str'>, <function <lambda>>), 'quat': And(<class 'numpy.ndarray'>, <function <lambda>>), 'UID': Or(<class 'int'>, <class 'numpy.int64'>)}}¶
-
-
class
coscon.toast_helper.AvesHardware(data: Dict[str, dict], validate_schema: bool = True)[source]¶ Bases:
coscon.toast_helper.GenericDictStructure-
data: Dict[str, dict]¶
-
property
dataframe¶ DataFrame representation of the hardware
-
property
dataframe_with_azimuthal_equidistant_projection_with_orientation¶ DataFrame representation of the hardware
-
classmethod
from_dataframe(df: pandas.core.frame.DataFrame, validate_schema=True)[source]¶ Create Hardware from a dataframe representation
-
reorder_to(pixels: List[int], TB_anti_alignment: bool = False, TB_alternate_anti_alignment: bool = False, validate_schema: bool = False) → coscon.toast_helper.AvesHardware[source]¶ Reorder pixels according its integer assignment
- Parameters
TB_anti_alignment (bool) – if True, assume TB pixels ordering BTTBBTTBBT..
else BTBTBTBT…
-
reorder_to_from_csv(path: pathlib.Path, TB_anti_alignment: bool = False, TB_alternate_anti_alignment: bool = False, validate_schema: bool = False) → coscon.toast_helper.AvesHardware[source]¶ Reorder pixels according its integer assignment
- Parameters
path (Path) – a csv or txt file that has the pixel numbers per line
TB_anti_alignment (bool) – if True, assume TB pixels ordering BTTBBTTBBT..
else BTBTBTBT…
-
schema: ClassVar[dict] = {<class 'str'>: {'bands': <class 'dict'>, 'detectors': <class 'dict'>, 'pixels': <class 'dict'>, 'telescopes': <class 'dict'>, 'wafers': <class 'dict'>}}¶
-
-
class
coscon.toast_helper.AvesPixels(data: Dict[str, Union[float, List[str]]], validate_schema: bool = True)[source]¶ Bases:
coscon.toast_helper.GenericDictStructurea class describing the pixels of Aves.
-
data: Dict[str, Union[float, List[str]]]¶
-
schema: ClassVar[dict] = {<class 'str'>: {'bands': And(<class 'list'>, <function <lambda>>), 'sizemm': <class 'float'>}}¶
-
-
class
coscon.toast_helper.AvesTelescopes(data: Dict[str, Union[float, List[str]]], validate_schema: bool = True)[source]¶ Bases:
coscon.toast_helper.GenericDictStructurea class describing the telescopes of Aves.
-
data: Dict[str, Union[float, List[str]]]¶
-
schema: ClassVar[dict] = {<class 'str'>: {'platescale': Or(<class 'float'>, <class 'numpy.float64'>), 'wafers': And(<class 'list'>, <function <lambda>>), 'waferspace': Or(<class 'float'>, <class 'numpy.float64'>)}}¶
-
-
class
coscon.toast_helper.AvesWafers(data: Dict[str, Optional[Union[float, int, str, List[str]]]], validate_schema: bool = True)[source]¶ Bases:
coscon.toast_helper.GenericDictStructurea class describing the wafers of Aves.
-
data: Dict[str, Optional[Union[float, int, str, List[str]]]]¶
-
schema: ClassVar[dict] = {<class 'str'>: {'type': <class 'str'>, 'npixel': Or(<class 'int'>, <class 'numpy.int64'>), 'pixels': And(<class 'list'>, <function <lambda>>), Optional('handed'): Or(None, <class 'float'>, <class 'int'>, <class 'numpy.float64'>, <class 'numpy.int64'>), 'position': Or(<class 'int'>, <class 'numpy.int64'>), 'telescope': <class 'str'>}}¶
-
-
class
coscon.toast_helper.CrosstalkMatrix(names: np.ndarray[S], data: np.ndarray[np.float64], name: Optional[str] = None, freq: Optional[np.ndarray[np.float64]] = None)[source]¶ Bases:
coscon.toast_helper.GenericMatrixCrosstalk square matrix where column and row share the same names
-
compare_plot_diag(others: List[coscon.toast_helper.CrosstalkMatrix])[source]¶
-
compare_plot_nearest_neighbor(others: List[coscon.toast_helper.CrosstalkMatrix])[source]¶
-
property
dataframe¶
-
property
dataframe_diag_only¶
-
property
dataframe_nearest_neighbor_only¶
-
freq= None¶
-
classmethod
from_geometric(names: Union[List[str], np.ndarray], r: float = 0.01) → CrosstalkMatrix[source]¶ Generate a crosstalk matrix with coefficients in geometric series.
-
classmethod
from_joshian_matrix(names: Union[List[str], np.ndarray], nearest: float, next_nearest: float, floor: float) → CrosstalkMatrix[source]¶ Generate a crosstalk matrix with structure based on Josh’s simple assumption
-
classmethod
from_unique_matrix(names: Union[List[str], np.ndarray]) → CrosstalkMatrix[source]¶ generate a crosstalk matrix with each entry to be unique.
Mainly for debug use to confirm the matrix multiplication is correct.
-
to_random_normal() → coscon.toast_helper.CrosstalkMatrix[source]¶ Generate a random normal matrix based on original matrix except for diagonal
with mean and std given by the original matrix.
-
-
class
coscon.toast_helper.DictValueEqualsKey[source]¶ Bases:
objectA fake dictionary where its values always equal their keys
-
class
coscon.toast_helper.FakeFocalPlane(data: Dict[str, Union[float, np.ndarray]], validate_schema: bool = True)[source]¶ Bases:
coscon.toast_helper.GenericFocalPlanea class describing the output of fake_focalplane
-
data: Dict[str, Union[float, np.ndarray]]¶
-
plot(width: float = 4.0, height: float = 4.0, outfile: Optional[Path] = None, facecolor: Optional[Dict[str, Union[str, Tuple[float, float, float]]]] = None, polcolor: Optional[Dict[str, Union[str, Tuple[float, float, float]]]] = None)[source]¶
-
schema: ClassVar[dict] = {<class 'str'>: {'NET': Or(<class 'float'>, <class 'numpy.float64'>), 'alpha': Or(<class 'float'>, <class 'numpy.float64'>), 'epsilon': Or(<class 'float'>, <class 'numpy.float64'>), 'fknee': Or(<class 'float'>, <class 'numpy.float64'>), 'fmin': Or(<class 'float'>, <class 'numpy.float64'>), 'fwhm_arcmin': Or(<class 'float'>, <class 'numpy.float64'>), 'quat': And(<class 'numpy.ndarray'>, <function <lambda>>), 'rate': Or(<class 'float'>, <class 'numpy.float64'>)}}¶
-
-
class
coscon.toast_helper.GenericDictStructure(data: Dict[str, Any], validate_schema: bool = True)[source]¶ Bases:
object-
data: Dict[str, Any]¶
-
property
dataframe¶ DataFrame representation of the focal plane
This has opposite key-ordering from the dict i.e. self.data[some_key][‘quat’] == self.dataframe[‘quat’][some_key] == self.dataframe.loc[some_key, ‘quat’]
-
dump(path: Union[Path, str], overwrite: bool = False, compress: bool = None)[source]¶ Write hardware config to a TOML/YAML/JSON file.
-
schema: ClassVar[dict] = {}¶
-
validate_schema: bool = True¶
-
-
class
coscon.toast_helper.GenericFocalPlane(data: Dict[str, Any], validate_schema: bool = True)[source]¶ Bases:
coscon.toast_helper.GenericDictStructure-
property
azimuthal_equidistant_projection_with_orientation¶
-
data: Dict[str, Any]¶
-
property
dataframe_with_azimuthal_equidistant_projection_with_orientation¶
-
property
-
class
coscon.toast_helper.GenericMatrix(names: np.ndarray[S], data: np.ndarray[np.float64], name: Optional[str] = None)[source]¶ Bases:
objectGeneric matrix that has row names in ASCII.
-
name= None¶
-
property
names_str¶ names in list of str
-
property
shape¶
-
property
size¶
-
-
class
coscon.toast_helper.NaiveTod(names: np.ndarray[S], data: np.ndarray[np.float64], name: Optional[str] = None)[source]¶ Bases:
coscon.toast_helper.GenericMatrixNaive TOD matrix that has all data in contiguous array
-
apply_crosstalk(crosstalk_matrix: coscon.toast_helper.CrosstalkMatrix) → coscon.toast_helper.NaiveTod[source]¶
-
property
dataframe¶
-
-
class
coscon.toast_helper.SQUID(R_TES: Union[float, np.ndarray[np.float64]], r_s: Union[float, np.ndarray[np.float64]], L: Union[float, np.ndarray[np.float64]], L_com: float, C: Optional[np.ndarray[np.float64]] = None, omega: Optional[np.ndarray[np.float64]] = None)[source]¶ Bases:
objectA model of the SQUID readout.
See fig. 4 in Montgomery2020.
Montgomery2020: Montgomery et al., “Performance and Characterization of the SPT-3G Digital Frequency Multiplexed Readout System Using an Improved Noise and Crosstalk Model.”
-
C: Optional[np.ndarray[np.float64]] = None¶
-
L: Union[float, np.ndarray[np.float64]]¶
-
L_com: float¶
-
R_TES: Union[float, np.ndarray[np.float64]]¶
-
dataframe(include_omega: bool = False, include_freq: bool = False) → pandas.core.frame.DataFrame[source]¶
-
property
freq¶
-
omega: Optional[np.ndarray[np.float64]] = None¶
-
r_s: Union[float, np.ndarray[np.float64]]¶
-
to_crosstalk_matrix(names: Optional[Union[List[str], np.ndarray]] = None) → CrosstalkMatrix[source]¶ Compute the crosstalk matrix using Montgomery2020 approximations
-
to_crosstalk_matrix_exact(names: Optional[Union[List[str], np.ndarray]] = None) → CrosstalkMatrix[source]¶ Compute the crosstalk matrix using Montgomery2020 formulism without the approximations
-
-
coscon.toast_helper.fake_focalplane(samplerate: float = 20.0, epsilon: float = 0.0, net: float = 1.0, fmin: float = 0.0, alpha: float = 1.0, fknee: float = 0.05, fwhm: float = 30.0, npix: int = 7, fov: float = 3.0) → Dict[str, Union[float, np.ndarray]][source]¶ Create a set of fake detectors.
This generates 7 pixels (14 dets) in a hexagon layout at the boresight and with a made up polarization orientation.
This function is copied from TOAST workshop with the following license:
BSD 2-Clause License
Copyright (c) 2019, hpc4cmb All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.