coscon.cmb module

class coscon.cmb.Maps(names: Union[List[str], Tuple[str, ]], maps: np.ndarray, name: str = '')[source]

Bases: object

A class for multiple healpix maps that wraps some healpy functions

In ring ordering, uK ($mathrm{mu K}$) unit.

property f_sky
classmethod from_fits(path: pathlib.Path, memmap: bool = True)coscon.cmb.Maps[source]
classmethod from_planck_2018(nside: int)coscon.cmb.Maps[source]

Use the Planck 2018 best-fit ΛCDM model to simulate a map

Use official release if nside is small enough.

classmethod from_pysm(freq: float, nside: int, preset_strings: List[str] = ['c1'])coscon.cmb.Maps[source]
maps: np.ndarray
property maps_dict
property maps_dict_fullname
mollview(n_std: Optional[int] = None, fwhm: Optional[float] = None, graticule: bool = True, **kwargs)[source]

object wrap of healpy.mollview

Parameters
  • n_std – if specified, set the range to be mean ± n_std * std

  • fwhm – if specified, smooth map to this number of arcmin

property n_maps
name: str = ''
names: Union[List[str], Tuple[str, ]]
property spectra

Use anafast to calculate the spectra results are always 2D-array

property to_spectra
write(path: pathlib.Path, nest: bool = True, dtype: Optional[Union[numpy.dtype, List[numpy.dtype]]] = None, fits_IDL: bool = True, coord: str = 'G', partial: bool = False, column_names: Optional[Union[str, List[str]]] = None, column_units: Union[str, List[str]] = 'uK', extra_header: list = [], overwrite: bool = False)[source]
class coscon.cmb.PowerSpectra(names: List[str], spectra: numpy.ndarray, l_min: int = 0, l: Optional[numpy.ndarray] = None, scale: str = 'Dl', name: str = '')[source]

Bases: object

A class for power-spectra.

In [microK]^2 unit.

compare(*others: coscon.cmb.PowerSpectra, relative: bool = False) → pandas.core.frame.DataFrame[source]

Return a tidy DataFrame comparing self and others.

compare_plot(*others: PowerSpectra, show: bool = True, relative: bool = False) → List[plotly.graph_objs._figure.Figure][source]
property dataframe
classmethod from_class(path: Optional[pathlib.Path] = None, url: Optional[str] = None, camb: bool = True, name: str = '')coscon.cmb.PowerSpectra[source]

read from CLASS’ .dat output

Parameters

camb (bool) – if True, assumed format = camb is used when

generating the .dat from CLASS

To self: migrated from abx’s convert_theory.py

classmethod from_dataframe(df: pandas.core.frame.DataFrame, scale: str = 'Dl')coscon.cmb.PowerSpectra[source]
classmethod from_planck_2018()coscon.cmb.PowerSpectra[source]

Use the Planck 2018 best-fit ΛCDM model

Officially released by Planck up to l equals 2508. see http://pla.esac.esa.int/pla/#cosmology and its description

classmethod from_planck_2018_extended()coscon.cmb.PowerSpectra[source]

Use the Planck 2018 best fit ΛCDM model with extended l-range up to 4902

This is reproduced using CLASS but with an extended l-range

intersect(*others: coscon.cmb.PowerSpectra) → List[pandas.core.frame.DataFrame][source]
l: Optional[numpy.ndarray] = None
property l_array
property l_max

exclusive l_max

l_min: int = 0
property n_spectra
name: str = ''
names: List[str]
scale: str = 'Dl'
spectra: numpy.ndarray
to_maps(nside: int, pixwin=False)coscon.cmb.Maps[source]

Use synfast to generate random maps

coscon.cmb.simmap_planck2018_cli()[source]