JIT compilers for scientific computing in Python: Numba vs. JAX

A Case Study Evaluating Gravitational Lensing Likelihood
HTML presentation, PDF archive

Dr. Kolen Cheung, Research Software Engineer
khcheung@berkeley.edu

September 21st, 2025

Abstract

Accelerating scientific Python with JITs. We share our journey migrating a gravitational lensing likelihood
calculation from Numba to JAX. Learn about performance gains, automatic differentiation benefits, and practical
lessons for high-performance scientific computing in Python.

Python is widely used in scientific research, but pure Python can sometimes be too slow for computationally
intensive tasks. Just-In-Time (JIT) compilers are essential tools for boosting performance, allowing Python code to
run closer to native speeds. While libraries like Numba have long been popular for accelerating numerical Python
functions, JAX offers a new paradigm, combining JIT compilation with powerful features like automatic differentiation
(auto-diff) and execution across different hardware (CPUs, GPUs, TPUs).

This talk will take you on a journey through our experience optimizing a critical component of an astrophysics
analysis pipeline: the calculation of the likelihood function for gravitational lensing models, used with data from the
James Webb Space Telescope. We initially used Numba to accelerate this calculation, but the need for performance
portability across hardwares, and the potential speed up from gradient computation for model fitting led us to explore
JAX’s unique capabilities.

This session will walk through the practical steps, challenges, and insights gained from migrating this complex
scientific code from its existing Numba implementation to a JAX-based one.

You will learn:

¢ Why leveraging performance tools like JITs is crucial for cutting-edge scientific analysis in Python.

* The practical considerations when migrating existing numerical code from Numba to JAX, including syntax

changes and managing state.

* How JAX’s auto-differentiation simplifies gradient calculations essential for scientific optimization and sampling

tasks.

* The significant performance improvements achieved in our specific gravitational lensing case study by using

JAX’s compiled functions.

* Broader lessons learned about structuring scientific Python projects to effectively use modern JIT compilers

and harness capabilities like auto-diff.

We'll conclude by comparing Numba and JAX in benchmark performance, developer ergonomics, and tradeoffs
between the two, providing you with practical guidance for choosing the right tool for your scientific computing needs.

This case study offers a concrete example of how evolving Python libraries are enabling researchers to perform
complex, high-performance computations directly within the Python ecosystem. Join us to see how tools like JAX are
empowering scientific discoveries, one optimised function at a time.

This talk is suitable for intermediate Python programmers familiar with NumPy.

Contents

Context: Why Python in HPC?
Why do I use Python in HPC?
Questions: which language can you use to write applications for HPC?
Questions: Why Python in HPC? What is its superpower in supercomputing?

DN DN DN N

Context: Why JIT?
Short introduction on aot/jit compilations & interpreter
Short introduction on the landscape of acceleration framework of numeric code in Python
Why jit: solving the 2 language problem

B~ www

Concrete example of Numba vs. JAX

IS}
[NN

https://ickc.github.io/RSE/PyAutoLens/2025-09-21-autojax.html
https://ickc.github.io/RSE/PyAutoLens/2025-09-21-autojax.pdf
mailto:khcheung@berkeley.edu

JAX 5

Case closed? e e e e 6
Digression in problem sizes e e e e e e e e 6
Numpy—Ilow memory version v i vt e e e e e e e e e e e e e e 6
Numba—Ilow memory version i e e e e e e e e e e e e 6
JAX—IoW Memory Version e e e e e e e e e e e e e e e e e e 7
Numba vs. JAX on paper 8
What is Numba / JAX e e 8
Numba vs. JAX . . . e e e e e 8
Characteristics of JAX L e e e e 8
When not to JIT in Python? e e e e e 9
Numba vs. JAX: case study of PyAutoLens 9
Benchmark: Numba vs JAX with 1 CPU core e et e 9
Benchmark: Numba with 128 CPU cores and JAX with CUDA on GPU (A100) 9
Bonus round 1: Numba vs JAX with 1 CPU core (F) e ettt 10
Bonus round 2: Numba with 128 CPU cores and JAX with CUDA on GPU (A100) (F) 10
Flow chart e e e e 11
What JIT has enabled in scientific computing? 11
Context: Maximal Likelihood Estimation (MLE) 11
MLE in action e e e e e 11
MLE in action e e e e e 13
So, Who Won? e e e e e 14
Team, Links, & References e e 14

Context: Why Python in HPC?
Why do I use Python in HPC?

¢ Cosmologist

¢ PhD: CMB Data Analysis
- processing ~ O (10 TiB) ~ O (PiB) of data for cosmological inference
- using scientific softwares in Python
- running on NERSC (a top 10 HPC system)

I am a cosmologist. I did my PhD in UCBerkeley Physics department on the topic of Cosmic Microwave Background
radiation. During my research, I use the NERSC HPC facility in the US, a top 10 supercomputing system, to perform
CMB data analysis. Briefly speaking, as we cannot do an experiment cosmologically, we instead observe a huge
amount of data and use statistical methods such as Bayesian inference to deduce information about our universe,
such as deducing dark matter composition, finding evidence of inflation during the Big Bang. My main interst in
Python is therefore primarily on its application of scientific computing on HPC.

Questions: which language can you use to write applications for HPC?
Languages that has demonstrated to scale to state-of-the-art, full system supercomputer

Fortran
C/C++
Python
Julia
matlab
rust

Questions: Why Python in HPC? What is its superpower in supercomputing?

¢ Because it is where the community is.
* Because we are the people who don’t care what language our algorithm is implemented in.
-C
- C++
- Fortran
- Julia
- Rust

The opening keynote resonates with me a lot. Python has superpowers. I recommend people watching that to see
the history and the bigger picture. Here, I am more narrowly focused to tell you why, at this particular moment,
Python is the language of choice to write and run scientific applications on supercomputers.

First of all, it is where the community is. Numpy, Scipy, Astropy, you name it.

Secondly, it is because we are the people who don’t care what language our algorithm is implemented in. In order
words, Python is the glue. If we look back to the list of languages that has demonstrate they can scale to the
state-of-the-art supercomputer at a given era, there is not a lot on the list, and Python is one of them. You might call
that cheating, because in this case Python is mostly just calling C modules or libraries written in Fortran. But we
don’t care. Python is the glue that successfully composed very complicated scientific workflow together.

Context: Why JIT?

Short introduction on aot/jit compilations & interpreter

* interpreters
- CPython
- bash
* compilers
- AOT
gcc from GNU compilers, clang from LLVM compilers
- CPython is AOT compiled by these compilers!
¥ traditionally excels at HPC: C/C++, Fortran
- JIT
* pypy
¥ Julia
Javascript has a JIT

Back to the languages, focusing on the aspect of how source code eventually runs, it falls into two categories, compilers
and interpreters. And within compilers, there are also ahead-of-time (AOT) compilation and just-in-time (JIT)
compilation.

Here we will name a few examples. The reference Python implementation, CPython, is an interpreter, which is AOT
compiled by C compilers such as gcc and clang. Another well known Python implementation pypy is a jit compiler.

Short introduction on the landscape of acceleration framework of numeric code in
Python

e AOT
- C with CPython API
% e.g. Numpy, which is a framework in itself
— Cython: superset of the Python language, compiled to C modules, handle CPython API and Python
interface automatically
- pybind11: C++ 11+, handle CPython API and Python interface semi-automatically
e JIT
— pypy: general purpose Python implementation (any valid Python should runs)
— CPython 3.13+ experimental JIT: only a subset of Python code will be jit compiled (and is not clear on
when and where), not focused on numerical
— Numba, JAX: DSL, jit-compile a subset of Python, focused on numerical

I hope we all agree the CPython interpreter is slow, right? To accelerate applications running in CPython, there are
multiple frameworks to do it. The traditional model is C modules: write your performance critical part of the code in
C and use the CPython API to expose a Python interface to the users. A prominent example of that is numpy, which
defines an interface often used in high performance numerical operations, and is architected in C with a pythontic
interface. This is still one of the fastest and pythonic way to write numerical code in Python without introducing
further compliation to the users. Other examples on AOT are cython and C++ with pybind11, which I won’t go into
details.

Turning our attention to the spotlight of the day: JIT. pypy is a general purpose Python jit compiled runtime for a
long time. There is also an experimental JIT compiler in CPython 3.13+, which would jit compiled a subset of hot
code.

The remaining JIT compilers are the one we are focusing on today. Numba and JAX can both be regarded as Domain
Specfic Languages that will jit compiled a subset of the Python language, focused on numerical compuations.

Why jit: solving the 2 language problem
To replace this single function from Numba to C++ with pybind11,

@numba.jit(parallel=True)
def _fma(out, weights, *arrays):
for weight, array in zip(weights, arrays):
out += weight * array

hpc4cmb/toast#a38d1dé:

14 files changed
+230 -36 lines changed

.. and 30% faster!
¢ Python gives you velocity: rapid prototyping science code is a path dependent evolution

* Numba jit gives you speed (SIMD + multi-threading): C++ with SIMD and OpenMP multi-threading is only
30% faster in this case. The single @jit decorator gives you 3 times speed up comparing to pure Numpy
implementation.

¢ JIT sometimes has advantage over AOT because it can see the data

¢ JIT obviously has overhead, but if you are processing “big data”, that amount of time usually is much shorter
than it takes to run the calculation itself.

To briefly give an idea why JIT may be useful, we can look at this function as an example. If you are familiar with
Numba enough, as soon as you write down this simple function with Numpy, adding the jit decorator there is a
no-brainer. You would be able to immediately predict that it will be faster, and memory allocation is simpler, and
hence lesser memory pressure and lesser chance of getting killed by out-of-memory (OOM) error.

However, when I ported this to C++ with pybind11, 14 files are changed, 230 lines are added. If you look into the
commit change, for sure a lot of them are boilerplates. But that is exactly the point. It went from using Numba as a
10s decision to being 30% faster after a ton of work.

This sort of things happens all the time when writing science code. How your program eventually got there is often
not obvious in the beginning. It involves repid prototyping and sometimes solving complicated mathematical or
algorithmic problems. Having a DSL within Python that can be jitted is a superpower Python given us to move fast
and run fast at the same time.

Concrete example of Numba vs. JAX

~

w
X 1
j Z_z (i—gj)'ﬁk]), 1<i,j<M
k=1 k

Now it all makes sense, kind of. Let us do an actual example to see how JIT works.

I call this a slow track. It is a live demo without being live. I hope it will gives you a feel of the languages and gain
intuitions yourself. Later on, we will have a fast track and you just have to believe the high level summaries I am
going to give you.

Let’s stare at this equation and see how you would implement it.

Numpy

(gi_gj) Upl), 1<ij<M

As usual in Numpy, we vectorize everything:

wml =

https://github.com/hpc4cmb/toast/commit/a38d1d6dbcc97001a1ad1c315bb08cf1eecc74c7

import numpy as np

def w_mm_np(
n_k: np.ndarray[tuple[int], np.floaté4],
u_k_vec: np.ndarray[tuple[int, int], np.floaté4],
g_m_vec: np.ndarray[tuple[int, int], np.floaté4],
) -> np.ndarray[tuple[int, int], np.floaté4]:
M, M, 1, 2)
6g_mml_vec = g_m_vec.reshape(-1, 1, 1, 2) - g_m_vec.reshape(l, -1, 1, 2)
(1, 1, K, 2)
u_11k_vec = u_k_vec.reshape(l, 1, -1, 2)

return (
np.cos(
(2.0 % np.pi) *
(M, M, K)
(
dg_mml_vec[:, :, :, 0] * v_11k_vec[:, :, :, 11 +
dg_mml_vec[:, :, :, 11 * v_11k_vec[:, :, :, 0]
)
)/
(1, 1, K)

np.square(n_k).reshape(1, 1, -1)
).sum(2) # sum over k

898 ms + 9.62 ms per loop (mean + std. dev. of 7 runs, 1 loop each)

Ignore the tiny little details there where the order of the dimensions in g and # are opposite to each other.

Numba

How would you implement it in Numba? Just add the jit decorator:

import numba

@numba.jit("f8[:, ::1](f8[::1], f8[:, ::1]1, f8[:, ::11)", nopython=True, nogil=True, parallel=True)
def w_mm_numba(

522 ms + 9.01 ms per loop (mean + std. dev. of 7 runs, 1 loop each)

JAX

How would you implement it in JAX? By add the jit decorator, and replacing numpy with jax.numpy:

import jax
import jax.numpy as jnp

@jax.jit
def w_mm_jax(
n_k: np.ndarray[tuple[int], np.floaté64],
u_k_vec: np.ndarray[tuple[int, int], np.floaté4],
g_m_vec: np.ndarray[tuple[int, int], np.floaté4],
) -> np.ndarray[tuple[int, int], np.floaté4]:
MM, M, 1, 2)
6g_mml_vec = g_m_vec.reshape(-1, 1, 1, 2) - g_m_vec.reshape(l, -1, 1, 2)
(1, 1, K, 2)
u_11k_vec = u_k_vec.reshape(1, 1, -1, 2)

return (
jnp.cos(
(2.0 % jnp.pi) *
(M, M, K)
(
dg_mml_vec[:, :, :, 0] * v_11k_vec[:, :, :, 11 +
og_mml_vec[:, :, :, 11 * u_11k_vec[:, :, :, 0]

)
)/

jnp.square(n_k).reshape(1, 1, -1)
).sum(2)
144 ms + 1.53 ms per loop (mean + std. dev. of 7 runs, 10 loops each)
You would notice the speed up from Numpy to Numba to JAX, in this order, which is often the case.
OK, case closed, right?

Hold on, not so fast. Does anyone spot any potential problem with this implementation?

Case closed?

import numpy as np

def w_mm_np(
n_k: np.ndarray[tuple[int], np.floaté4],
u_k_vec: np.ndarray[tuple[int, int], np.floaté4],
g_m_vec: np.ndarray[tuple[int, int], np.floaté4],
) -> np.ndarray[tuple[int, int], np.floaté4]:

8g_mml_vec = g_m_vec.reshape(-1, 1, 1, 2) - g_m_vec.reshape(l, -1, 1, 2)

u_11k_vec = u_k_vec.reshape(1, 1, -1, 2)
return (
np.cos(
(2.0 % np.pi) *

(
dg_mml_vec[:, :, :, 0] * v_11k_vec[:, :, :, 11 +
dg_mml_vec[:, :, :, 11 * u_11k_vec[:, :, :, 0]
)
)/

np.square(n_k).reshape(1, 1, -1)
).sum(2)

Digression in problem sizes

K
N 21 S oy -
wij:k—léc"s 27 [(&:—&) -w]), 1<ij<M

Number of image pixels M ~ 70,000 = M2 ~5x10%, 0<i,j<M
Number of visibilities K ~ 107, 0<k <K

(M,M,K,2) of 64-bit array would be ~ 700 PiB!
While (M, M) of 64-bit array would be ~ 40 GiB only.
To put that into perspective, whole system aggregated memory of NERSC is ~ 2 PiB.

Numpy—Ilow memory version
¢ avoid expanding K

The solution is simple, we do not want to expand the K-dimension fully in memory. We want to evaluate that lazily
and accumulate it over k.

There is no efficient solution in numpy however without using Python loops.

Numba—low memory version

@numba.jit("f8[:, ::11(f8[::11, f8[:, ::11, f8[:, ::11)", nopython=True, nogil=True, parallel=True)
def w_mm_numba_iterative(

n_k: np.ndarray[tuple[int], np.floaté4],
u_k_vec: np.ndarray[tuple[int, int], np.floaté4],
g_m_vec: np.ndarray[tuple[int, int], np.floaté4],
) -> np.ndarray[tuple[int, int], np.floaté4]:
M = g_m_vec.shape[0]
K = u_k_vec.shape[0]
dg_mm_vec = g_m_vec.reshape(-1, 1, 2) - g_m_vec.reshape(l, -1, 2)

w_mm = np.zeros((M, M))
for k in numba.prange(K):
w_mm += np.cos((2.0 * np.pi) * (dg_mm_vec[:, :, 1] % u_k_vecl[k, 0] + dg_mm_vec[:, :, 0] *
o~ u_k_vecl[k, 11)) / np.square(n_k[k])
return w_mm

55 ms + 1.59 ms per loop (mean % std. dev. of 7 runs, 10 loops each)

In Numba, however, we can have efficient loops, we can even do it in parallel. It will handles the reduced sum there
in parallel correctly for you. It actually maps very nicely to C with SIMD and OpenMP parallel-for there. In fact,
OpenMP is one of the threading layer backend in Numba.

JAX—low memory version

@jax.jit
def w_mm_jax_iterative(

n_k: np.ndarray[tuple[int], np.floaté4],

u_k_vec: np.ndarray[tuple[int, int], np.floaté4],

g_m_vec: np.ndarray[tuple[int, int], np.floaté4],
) -> np.ndarray[tuple[int, int], np.floaté4]:

M = g_m_vec.shape[0]

6g_mm_vec = g_m_vec.reshape(M, 1, 2) - g_m_vec.reshape(l, M, 2)

og_mm_y = dg_mm_vec[:, :, 0]
og_mm_x = dg_mm_vec[:, :, 1]
def _w_mm_k(

n: float,

u_vec: np.ndarray[tuple[int], np.floaté4],
) -> np.ndarray[tuple[int, int], np.floaté4]:
return jnp.cos((2.0 * jnp.pi) * (dg_mm_x * u_vec[O] + &g_mm_y * u_vec[1])) / (n * n)

def _accumulate_w_mm(
sum_: np.ndarray[tuple[int, int], np.floaté4],
args: tuple[float, np.ndarray[tuple[int], np.floaté4]],
) -> tuple[np.ndarray[tuple[int, int], np.floaté4], None]:
n, Uu_vec = args
return sum_ + _w_mm_k(n, u_vec), None

res, _ = jax.lax.scan(
_accumulate_w_mm,
jnp.zeros((M, M)),
(
n_k,
u_k_vec,
),
)

return res
86.6 ms + 102 ps per loop (mean + std. dev. of 7 runs, 10 loops each)
This means we can does the same in JAX, right? Wrong.

This is where one of the core design of JAX matters. JAX is essentially designed with pure functional programming
paradigm in mind. It enforces immutable data, where the in-place reduced sum there is prohibited.

It does not mean it does not have semantics for looping. Here, I choose scan. What it does basically is to focus on
each term for a dixed &, and then accumulate the sum over different values of k.

See python-autojax/experiments/reduced_sum at main - ickc/python-autojax for more details on how this can be
expressed in JAX.

Numba vs. JAX on paper
What is Numba / JAX

* Numba

— jit compiler powered by LLVM compiler

- CPU only

% numba.cuda is an entirely different interface

e JAX

- tracing, jit compiler powered by XLA compiler
designed for machine learning workflow
no side effects — functional paradiagm
targets CPU, GPU (NVidia, AMD, Intel, Apple), TPU simultaneously
solving 2 language problem

- solving “3 implementations problem”
¢ Better think of them as language + compiler + library

Now that we have seen some examples on how jit works, we will introduce them once more in details.

Numba is a jit compiler supporting a subset of Python and NumPy operations, powered by LLVM. While it is possible
to target the GPU via CUDA, it requires rewriting the function using different APIs and paradigms, not to mention
it is CUDA (i.e. NVidia) only.

JAX is a jit compiler, tracing compiler by Google, powered by XLA compiler, originated from Google. JAX is designed
primarily for machine learning workloads but is suitable for scientific computing as well. It is a tracing compiler
removing side-effects of function. I.e. effectively it encourages functional programming paradigm and thinking. It
automatically targets multiple hardware architectures including CPU, GPU, TPU, without requiring rewriting. I.e.
it solves the “two-language problem”, or more accurately, “three-implementation problem”: prototype/API, CPU,
GPU.

This is where JAX shines over other solutions to develop for the GPU. In principle, one single implementation is all
you need. You do not need to optimize a function for the CPU, optimize another for the GPU.

Numba vs. JAX
Table 1: Numba vs. JAX

Numba

JAX

C-like mini language

Implements a subset of Python+NumPy, with a
parallelization model similar to a mini-“OpenMP”
NumPy implementations are dropped in replacement
but only a subset is implemented. Calling NumPy
within jitted function is completely hijacked.
Documentation is minimal.

Functions “recompile” whenever input type changes.

No automatic compiling & offloading to accelerator. No
autograd/autodiff.

Smaller language (JAX C Numba): restrictions on
control flow, mutation, and dynamic shapes
Implements a subset of Python+NumPy+SciPy exposed
via duck-typing.

jax.numpy and jax.scipy have similar API comparing to
NumPy and SciPy, but has its own documentation. This
facilitates deviations in behaviors.

Functions “recompile” whenever input type and shape
changes.

Going through FFI is more costly: memory transfer from
and to device, losing autograd/autodiff.

Characteristics of JAX

* tracing compiler & recompile per shape change = static_argnums

@partial(jax.jit, static_argnums=0)
def this_recompile_everytime(shape):
return jax.numpy.zeros(shape)

¢ Compiler Driven Design

https://github.com/ickc/python-autojax/tree/main/experiments/reduced_sum
https://numba.readthedocs.io/en/stable/reference/numpysupported.html
https://docs.jax.dev/en/latest/jax.numpy.html
https://docs.jax.dev/en/latest/jax.scipy.html
https://docs.jax.dev/en/latest/notebooks/Common_Gotchas_in_JAX.html

- Especially in JAX, partly because of its functional paradigm, framing your problem in JAX idiomatic
expressions results in great speed up, sometimes more than you could do otherwise in Numba because of
its design (recompile per shape, fusion/fusing compatible operations, etc.), but you’ll hit a wall if you want
more low-level optimizations.

— It can also means performance improvements can come for free through compiler improvements, as long
as your code is written in JAX idiomatic way.

¢ Easy to port to GPU without setting one up.
¢ JAX vs numba-cuda: The XLA compiler handles device-specific optimization automatically.

¢ As a functional language, JAX nudges you to write correct code, and performance comes as a bonus.

When not to JIT in Python?

¢ Don’t wrestle with languages, choose something else
- AOT: C++ + pybind11
— JIT: Julia

If you find yourself wrestling against the language, deviating from idioms and best practices, time to choose something
else!

Numba vs. JAX: case study of PyAutoLens

Benchmark: Numba vs JAX with 1 CPU core
K
1 - - Y ..
iy =) —cos(2m[(&,—&) 14]), 1<ij<M
i=1"%

Table 2: N = 64, K = 32768, M ~ N2 ~ 4000

Implementation s 0

jax_compact 2.5543 (1.00) 0.0050
numba_compact 2.8768 (1.13) 0.0012
jax 3,368.6229 (>1000.0) 1.6803
numba 3,702.7006 (>1000.0) 0.7385

We previously have seen different implementations of & and some informal benchmarks.
Here we are seeing the benchmark generated using the actual library I wrote.

The numba and jax in this table corresponds to the low memory implementation we’ve shown previously. We see that
given 1 single CPU core, the JAX version is slightly faster than the Numba version.

But more importantly, we see that there is a _compact version that I have not shown before. This is 3 orders of
magnitude faster. This is done by taking advantage of the fact that ég there has a lot of repeatitive values. The
algorithm that I shown to you is O (M?2) while the compact version is O (M).

This also illustrates that sometimes you can focus on low level optimization and have 30% speed up. Or you could
spend your time instead on the mathematics behind it and find a better algorithm that can achieves unlimited
amount of speed up.

Benchmark: Numba with 128 CPU cores and JAX with CUDA on GPU (A100)

Table 3: N =32, K =8192, M ~ N2 ~ 1000

Implementation ms o
numba_compact 2.5029 (1.0) 0.0520
jax_compact 61.5560 (24.59) 6.8555
jax 143.2451 (57.23) 0.0749
numba 1,794.1949 (716.83) 14.9648

Now how about the million dollar question, how would JAX perform on the GPU? Since the Numba implementation
cannot run on the GPU, let us give it a boost to have some resembance of fair fight, 128 CPU cores, vs. JAX on the
NVidia A100.

(Notice the slight change of problem size here.)

What we see is the Numba version scales almost perfectly with 128 CPU cores. The JAX implementation is however
another order of magnitude faster.

What happens for the compact case though? I think it is because they are so efficient so that the problem size is not
big enough to “warm up” the GPU. But note that it is not a fair fight anyway, as we can talking about comparing
benchmark from different hardware.
Bonus round 1: Numba vs JAX with 1 CPU core (F)

F=TTypT

Table 4: N =64, B=3, K = 32768, P =32, S = 256,
curvature_matrix

Implementation ms o

numba_sparse 8.0733 (1.0) 0.0501
jax 19.7302 (2.44) 1.6986
jax_sparse 25.0091 (3.10) 0.1484
jax_BC0O 48.5340 (6.01) 0.1571
numba_compact_sparse 49.8400 (6.17) 0.0794
original_preload_direct 99.2061 (12.29) 0.3163
numba 125.3019 (15.52) 0.1143
original 132.4863 (16.41) 0.1376
numba_compact_sparse_direct 139.9244 (17.33) 0.1562
jax_compact_sparse_BC00 379.7214 (47.03) 1.4144
jax_compact_sparse 380.8865 (47.18) 2.4322

Just to give you one more benchmark to look at, here is another complicated example I have done in the project. You
are already familar with i, where as T here can be a sparse matrix.

While I am not going into details here, but there is a bunch of combinatorics here. Should we calculate @ directly, or
go through the compact version? Should we use the sparse structure of matrix 7, or expand that in memory first?

My claim is that this depends on the size of input data, and which is the fastest to choose from depends on your data
which can be informed by benchmark like this.

Bonus round 2: Numba with 128 CPU cores and JAX with CUDA on GPU (A100) (&)

Table 5: N =32, B =300, K =8192, P =32, S =256,
curvature_matrix

Implementation s 0

jax 260.5957 (1.0) 29.3714
jax_BCO0O 3,078.2068 (11.81) 35.9463
jax_compact_sparse_BC0O 3,207.3388 (12.31) 107.0798
numba_sparse 5,548.5175 (21.29) 64.3711
jax_compact_sparse 7,190.9015 (27.59) 35.7355
numba 18,187.5003 (69.79) 5,603.6081
original 18,279.9851 (70.15) 6,052.1386
jax_sparse 19,786.7200 (75.93) 42,9344
numba_compact_sparse 32,605.2243 (125.12) 248.8764
numba_compact_sparse_direct 1,362,329.9249 (>1000.0) 1,366.9112
original_preload_direct 25,218,633.7856 (>1000.0) 8,722.4870

Looking at how JAX runs on the GPU, surprisingly the simplest implementation is fastest. Again I suspect there is
not enough data for those faster algorithm to flex its muscle.

10

Flow chart

If either Numba or JAX have enough feature to acommplish what you need, performance-wise, here’s a flowchart:

Is it linear algebra

No

CPU with
No many cores
__—"| @oosy?

Targeting multiple architectures
(CPU, GPU, etc.)?

heavy? Y T/ail' 5 | Numba
‘ es
Yes Would autodiff No “#Roll a dice
’N2—> make application Heads
faster? Yes
\> JAX
Yes /

Figure 1: Numba or JAX flowchart

What JIT has enabled in scientific computing?

Context: Maximal Likelihood Estimation (MLE)

e i, T,F, etc. are part of a likelihood function
* Aim: seek the input parameters corresponding to maximum likelihood

- = peak finding

- Gradient information is going to be useful here.
¢ JAX another secret weapon: autodiff / autograd (jax.grad)

— compilers can transform code

- transform function to find its gradient automatically

Now, let’s see what JIT has enabled our science.

I am not going to give these graphs a justice. But, I am going to have a crash course here and jump to conclusion.
The @, T, F, etc. you have seen before is part of a calculation known as the likelihood function. The @ is a big part
of turning the observed data into a likelihood function. Now you can make predictions from models given some
parameters. and the likelihood function is going to tell you how likely those parameters are. Using different kinds of
samplers, which all involve running the likelihood functions repeatedly, often with O (100, 000) of iterations. And
the parameters that corresponds to the maximum likelihood is simply called the maximal likelihood estmator (MLE).

This is basically how we do inverse problem statistically. And obviously it is some kind of maximization problem.

MLE in action

e 25 free parameters

— Lens Light (11): Sersic + Exponential

— Lens Mass (7): SIE + Shear
— Source Light (7): Sersic

PyAutoLens (via PyAutoFit) supports Nested sampling (Dynesty), MCMC (emcee), particle swarm optimization

(PySwarms)

11

v (arcsec)

7.02

3.51

0.0

-3.51

-1.02
-1.02 -3.51 0.0 3.51 71.02

X (arcsec)

12

3.58

0.20
1.79
- 015
(T)
>
v 0.0
[1¥]
— L 010
-
-1.79 0.05
0.00

-3.58
-3.58 -1.79 0.0 1.79 3.58

x (arcsec)

Here, we will see a concrete example of how PyAutoLens does it. Focusing on the image on the right, this is your
observed data, and in fact is an image of a strong gravitational lensing.

In the next slide, we are going to see how iterations of different parameters would predict this pattern.

MLE in action

e 25 free parameters
— Lens Light (11): Sersic + Exponential
- Lens Mass (7): SIE + Shear
— Source Light (7): Sersic
PyAutoLens (via PyAutoFit) supports Nested sampling (Dynesty), MCMC (emcee), particle swarm optimization
(PySwarms)

13

?015er5i{ Source: -1.1200060952286482e+19 358 Medel Image: -1.1200060952286482e+19

3000000

2500000 2000000

179

2000000 | 1500000

(=} i
i b4
() (.}
a oo - 1500000 = oo
= = 1000000
1000000
3.5 -1.79
500000
500000
-7.01 -3.58 o
-7.01 3.5 00 351 7.01 -3.58 -1.79 0o 179 358
¥ larcsec) % (arcsec)
Residuals: -1.1200060952286482e+19 0 35E—Chi Squareds: -1.1200060952286482e+ 15 ¢
~500000 4
179 179
3
- F-1000000 =
) ar
o 00 g2 00
= B
= L ~1500000 = -2
-1.79 -1.79
—2000000 1
-3.58 -3.58 o
-3.58 -1.79 0.0 179 358 -3.58 -1.79 0.0 179 358
¥ larcsech ¥ [arcsech

Eventually, if we compare the image on the top right hand corner, we can see the modeled image pretty much
ressemble the data in the previous slide.

Here is how we can infer on the mass of the dark matter we cannot see.

One more thing you can notice here is, while probably I can implement the likelihood function in any language
I want, eventually I need to expose it in a Python interface because I need to pass it to these libraries: Nested
sampling (Dynesty), MCMC (emcee), particle swarm optimization (PySwarms).

This is what I mean when I say the superpowers of Python is it is where the community is, and why which language
we implement it does not matter. Python is still our favorite glue. With JIT in Python like Numba and JAX, we can
stick to the glue a bit longer.

So, who won?

¢ In this particular case, who won the battle of JIT?
¢ JAX! By how much?
* 50x

- accordingly to preliminary results

Team, Links, & References

¢ PyAutoLens Team
- James W. Nightingale
- Richard G. Hayes
- Aristeidis Amvrosiadis
- Coleman Krawczyk
- Gokmen Kilic

14

¢ Link of this project: https://ickc.github.io/python-autojax/. This is a standalone framework to compare different
implementations of functions. Functions are being upstreamed to PyAutoLens.
- Link to example used today
- For different ways to do reduced sum efficiently in JAX, see python-autojax/experiments/reduced_sum at
main - icke/python-autojax for more.
— Scientific Computing with JAX | Durham HPC Days

Lastly, I just want to point you to the team of people working on this and some links to share.

15

https://ickc.github.io/python-autojax/
https://github.com/Jammy2211/pyautolens
https://github.com/ickc/python-autojax/blob/main/examples/w_tilde_pycon25.py
https://github.com/ickc/python-autojax/tree/main/experiments/reduced_sum
https://github.com/ickc/python-autojax/tree/main/experiments/reduced_sum
https://ickc.github.io/RSE/PyAutoLens/2025-06-04-autojax.html

	Context: Why Python in HPC?
	Why do I use Python in HPC?
	Questions: which language can you use to write applications for HPC?
	Questions: Why Python in HPC? What is its superpower in supercomputing?

	Context: Why JIT?
	Short introduction on aot/jit compilations & interpreter
	Short introduction on the landscape of acceleration framework of numeric code in Python
	Why jit: solving the 2 language problem

	Concrete example of Numba vs. JAX
	\tilde{w}
	Numpy
	Numba
	JAX
	Case closed?
	Digression in problem sizes
	Numpy—low memory version
	Numba—low memory version
	JAX—low memory version

	Numba vs. JAX on paper
	What is Numba / JAX
	Numba vs. JAX
	Characteristics of JAX
	When not to JIT in Python?

	Numba vs. JAX: case study of PyAutoLens
	Benchmark: Numba vs JAX with 1 CPU core
	Benchmark: Numba with 128 CPU cores and JAX with CUDA on GPU (A100)
	Bonus round 1: Numba vs JAX with 1 CPU core (F)
	Bonus round 2: Numba with 128 CPU cores and JAX with CUDA on GPU (A100) (F)
	Flow chart

	What JIT has enabled in scientific computing?
	Context: Maximal Likelihood Estimation (MLE)
	MLE in action
	MLE in action
	So, who won?
	Team, Links, & References

