Automatic Bracing | Code |
---|---|
\( \quantity{ \frac{1}{1+\frac{1}{2}} } \) | \quantity{ } |
\( \qty{ \frac{1}{1+\frac{1}{2}} } \) | \qty{ } |
\( \pqty{ \frac{1}{1+\frac{1}{2}} } \) | \pqty{ } |
\( \bqty{ \frac{1}{1+\frac{1}{2}} } \) | \bqty{ } |
\( \vqty{ \frac{1}{1+\frac{1}{2}} } \) | \vqty{ } |
\( \Bqty{ \frac{1}{1+\frac{1}{2}} } \) | \Bqty{ } |
\( \absolutevalue{ \frac{1}{1+\frac{1}{2}} } \) | \absolutevalue{ } |
\( \abs{ \frac{1}{1+\frac{1}{2}} } \) | \abs{ } |
\( \norm{ \frac{1}{1+\frac{1}{2}} } \) | \norm{ } |
\( \evaluated{ \frac{1}{1+\frac{1}{2}} }_1^2 \) | \evaluated{ }_1^2 |
\( \eval{ \frac{1}{1+\frac{1}{2}} }_1^2 \) | \eval{ }_1^2 |
\( \order{ \frac{x}{2} } \) | \order{ } |
\( \commutator{A} {B} \) | \commutator{A} {B} |
\( \comm{A} {B} \) | \comm{A} {B} |
\( \anticommutator{A} {B} \) | \anticommutator{A} {B} |
\( \acomm{A} {B} \) | \acomm{A} {B} |
\( \poissonbracket{A} {B} \) | \poissonbracket{A} {B} |
\( \pb{A} {B} \) | \pb{A} {B} |
Vector Notation | Code |
---|---|
\( \vectorbold{ a } \) | \vectorbold{ } |
\( \vb{ a } \) | \vb{ } |
\( \vb{ \psi } \) | \vb{ } |
\( \vb*{ a } \) | \vb*{ } |
\( \vb*{ \psi } \) | \vb*{ } |
\( \vectorarrow{ a } \) | \vectorarrow{ } |
\( \va{ a } \) | \va{ } |
\( \va{ \psi } \) | \va{ } |
\( \va*{ a } \) | \va*{ } |
\( \va*{ \psi } \) | \va*{ } |
\( \vectorunit{ a } \) | \vectorunit{ } |
\( \vu{ a } \) | \vu{ } |
\( \vu{ \psi } \) | \vu{ } |
\( \vu*{ a } \) | \vu*{ } |
\( \vu*{ \psi } \) | \vu*{ } |
\( \dotproduct \) | \dotproduct |
\( \vdot \) | \vdot |
\( \crossproduct \) | \crossproduct |
\( \cross \) | \cross |
\( \cp \) | \cp |
\( \gradient( \psi ) \) | \gradient( ) |
\( \grad( \psi ) \) | \grad( ) |
\( \grad[ \psi ] \) | \grad[ ] |
\( \grad{ \psi } \) | \grad{ } |
\( \divergence( \psi ) \) | \divergence( ) |
\( \div( \psi ) \) | \div( ) |
\( \div[ \psi ] \) | \div[ ] |
\( \div{ \psi } \) | \div{ } |
\( \curl( \psi ) \) | \curl( ) |
\( \curl[ \psi ] \) | \curl[ ] |
\( \curl{ \psi } \) | \curl{ } |
\( \laplacian( \psi ) \) | \laplacian( ) |
\( \laplacian[ \psi ] \) | \laplacian[ ] |
\( \laplacian{ \psi } \) | \laplacian{ } |
Operators | Code |
---|---|
\( \sin x \) | \sin |
\( \sin( x ) \) | \sin( ) |
\( \sin[2]( x ) \) | \sin[2]( ) |
\( \tr \rho \) | \tr |
\( \Tr \rho \) | \Tr |
\( \rank M \) | \rank |
\( \erf( x ) \) | \erf( ) |
\( \Res[ f(z) ] \) | \Res[ ] |
\( \principalvalue{ \int f(z) \dd{z} } \) | \principalvalue{ } |
\( \pv{ \int f(z) \dd{z} } \) | \pv{ } |
\( \PV{ \int f(z) \dd{z} } \) | \PV{ } |
\( \Re{ \frac{1}{1+\frac{i}{2}} } \) | \Re{ } |
\( \Im{ \frac{1}{1+\frac{i}{2}} } \) | \Im{ } |
Quick Quad Text | Code |
---|---|
\( \qqtext{ some texts } \) | \qqtext{ } |
\( \qq{ some texts } \) | \qq{ } |
\( \qq*{ some texts } \) | \qq*{ } |
\( \qcomma \) | \qcomma |
\( \qc \) | \qc |
\( \qcc \) | \qcc |
\( \qif \) | \qif |
\( \qthen \) | \qthen |
\( \qelse \) | \qelse |
\( \qotherwise \) | \qotherwise |
\( \qunless \) | \qunless |
\( \qgiven \) | \qgiven |
\( \qusing \) | \qusing |
\( \qassume \) | \qassume |
\( \qsince \) | \qsince |
\( \qlet \) | \qlet |
\( \qfor \) | \qfor |
\( \qall \) | \qall |
\( \qeven \) | \qeven |
\( \qodd \) | \qodd |
\( \qinteger \) | \qinteger |
\( \qand \) | \qand |
\( \qor \) | \qor |
\( \qas \) | \qas |
\( \qin \) | \qin |
Derivatives | Code |
---|---|
\( \differential{ x } \) | \differential{ } |
\( \dd{ x } \) | \dd{ } |
\( \dd[3] {x} \) | \dd[3] {x} |
\( \dd( \cos\theta ) \) | \dd( ) |
\( \dv{ x } \) | \dv{ } |
\( \derivative{ f }{x} \) | \derivative{ }{x} |
\( \dv{ f }{x} \) | \dv{ }{x} |
\( \dv[ n ]{f}{x} \) | \dv[ ]{f}{x} |
\( \dv{x}( x^2+x^3 ) \) | \dv{x}( ) |
\( \dv*{ f }{x} \) | \dv*{ }{x} |
\( \pdv{ x } \) | \pdv{ } |
\( \partialderivative{ f }{x} \) | \partialderivative{ }{x} |
\( \pdv{ f }{x} \) | \pdv{ }{x} |
\( \pdv[ n ]{f}{x} \) | \pdv[ ]{f}{x} |
\( \pdv{x}( x^2+x^3 ) \) | \pdv{x}( ) |
\( \pdv{ f }{x}{y} \) | \pdv{ }{x}{y} |
\( \variation{ F[g(x)] } \) | \variation{ } |
\( \var{ F[g(x)] } \) | \var{ } |
\( \var( E-TS ) \) | \var( ) |
\( \fdv{ g } \) | \fdv{ } |
\( \functionalderivative{ F }{g} \) | \functionalderivative{ }{g} |
\( \fdv{ F }{g} \) | \fdv{ }{g} |
\( \fdv{V}( E-TS ) \) | \fdv{V}( ) |
\( \fdv*{ F }{x} \) | \fdv*{ }{x} |
Dirac Bracket Notation | Code |
---|---|
\( \ket{ \frac{\psi + \phi}{2} } \) | \ket{ } |
\( \ket*{ \frac{\psi + \phi}{2} } \) | \ket*{ } |
\( \bra{ \frac{\psi + \phi}{2} } \) | \bra{ } |
\( \bra*{ \frac{\psi + \phi}{2} } \) | \bra*{ } |
\( \innerproduct{\frac{\psi + \phi}{2}}{\frac{\psi + \phi}{2}} \) | \innerproduct{\frac{\psi + \phi}{2}}{\frac{\psi + \phi}{2}} |
\( \braket{\frac{\psi + \phi}{2}}{\frac{\psi + \phi}{2}} \) | \braket{\frac{\psi + \phi}{2}}{\frac{\psi + \phi}{2}} |
\( \braket*{\frac{\psi + \phi}{2}}{\frac{\psi + \phi}{2}} \) | \braket*{\frac{\psi + \phi}{2}}{\frac{\psi + \phi}{2}} |
\( \braket{ \frac{\psi + \phi}{2} } \) | \braket{ } |
\( \outerproduct{\frac{\psi + \phi}{2}}{\frac{\psi + \phi}{2}} \) | \outerproduct{\frac{\psi + \phi}{2}}{\frac{\psi + \phi}{2}} |
\( \dyad{\frac{\psi + \phi}{2}}{\frac{\psi + \phi}{2}} \) | \dyad{\frac{\psi + \phi}{2}}{\frac{\psi + \phi}{2}} |
\( \ketbra{\frac{\psi + \phi}{2}}{\frac{\psi + \phi}{2}} \) | \ketbra{\frac{\psi + \phi}{2}}{\frac{\psi + \phi}{2}} |
\( \op{\frac{\psi + \phi}{2}}{\frac{\psi + \phi}{2}} \) | \op{\frac{\psi + \phi}{2}}{\frac{\psi + \phi}{2}} |
\( \ketbra*{\frac{\psi + \phi}{2}}{\frac{\psi + \phi}{2}} \) | \ketbra*{\frac{\psi + \phi}{2}}{\frac{\psi + \phi}{2}} |
\( \ketbra{ \frac{\psi + \phi}{2} } \) | \ketbra{ } |
\( \expectationvalue{ \frac{\psi + \phi}{2} } \) | \expectationvalue{ } |
\( \expval{ \frac{\psi + \phi}{2} } \) | \expval{ } |
\( \ev{ \frac{\psi + \phi}{2} } \) | \ev{ } |
\( \ev{ \frac{A+B}{2} }{\psi} \) | \ev{ }{\psi} |
\( \ev*{ \frac{\psi + \phi}{2} } \) | \ev*{ } |
\( \ev**{ \frac{\psi + \phi}{2} } \) | \ev**{ } |
\( \matrixelement{m}{ \frac{A+B}{2} }{n} \) | \matrixelement{m}{ }{n} |
\( \matrixel{m}{ \frac{A+B}{2} }{n} \) | \matrixel{m}{ }{n} |
\( \mel{m}{ \frac{A+B}{2} }{n} \) | \mel{m}{ }{n} |
\( \mel*{m}{ \frac{A+B}{2} }{n} \) | \mel*{m}{ }{n} |
\( \mel**{m}{ \frac{A+B}{2} }{n} \) | \mel**{m}{ }{n} |