
CS 267 Final Project — Application of Parallelization in POLARBEAR’s
Pipeline for CMB Analysis through Cython

Kolen Cheung Katherine Oosterbaan

May 12, 2017

Abstract

We proposed a strategy to speedup the pipeline of POLARBEAR, a group that measures Comic
Microwave Background Radiation (CMB) polarization, using Cython such that SIMD vectorization and
OpenMP parallelization can be utilized relatively easily. 3 example functions are focused in this study
that involves various different properties and hence different kinds of optimization techniques are required
and has different benchmark behaviors. In the end, we found that the result is generally positive, with
a projected speedup of ∼ 6 times on Cori’s Haswell nodes and ∼ 8 times on Cori’s KNL nodes. However,
more investigation is needed to be certain, because of the variance in strong scaling behavior in different
cases.

Contents

Contents 1

1 Introduction 2
1.1 The Physics . 2
1.2 The Pipeline . 2

2 Optimization and Parallelization 3
2.1 The Proposal . 4

3 Results, Benchmarks, and Discussions 4
3.1 Ground Template Filter . 5

3.1.1 Description . 5
3.1.2 Optimization Procedures . 6
3.1.3 Benchmark . 8

3.2 Boundary Distance Function . 10
3.2.1 Description . 10
3.2.2 Optimization Procedures . 10
3.2.3 Benchmark . 12

4 Conclusion 12

A More on Boundary Distance Function 13

B Polynomial Filter Array 13
B.1 Description . 13
B.2 Benchmark . 14

1

C Packaging and Distributing 14

D Intel TBB, MPI 14

E Numba 15

Reference 16

1 Introduction

1.1 The Physics

Physicists always push the boundary of our understanding of the most fundamental aspects of the Universe.
Some of the fundamental questions we can ask are what constitute the Universe; how gravity plays a role in
quantum Physics; why neutrino mass are non-zero, how much mass do they have, and how many numbers
of them; and if the current understanding of the Universe through Λ-CDM model is correct.

Many of such questions can only be answered when we probed at higher and higher energy scales. For
example, the highest energy scale we can achieve artificially in the state-of-the-art LHC is about ∼ 10TeV, or
10×1013 eV. But we can do only so much experimentally because of the limit of the size of the equipment
we can build, and it is unlikely for the foreseeable future to create energy scale as high as the GUT scale at
∼ 10×1016 GeV, or 10×1025 eV, which will be important for Quantum Gravity.

So instead of relying on human-built machine, one can measure the primordial signals created by the
Universe itself. And the oldest possible such signal that is observable is the Cosmic Microwave Background
(CMB) Radiation. It is the first light of the Universe when it was ∼ 400000 years young, and everything
happened between now and then are imprinted in this signal. Some of the information we can extracts
includes gravitational wave at GUT scale (by B-mode analysis on the CMB), dark matter, neutrino mass,
falsification of Λ-CDM model, etc.

POLARBEAR is one of the pioneer group on the measurement of CMB polarization in University of
California, Berkeley. One of the major result by POLARBEAR in 2014 is(Collaboration et al. 2014):

the hypothesis of no B-mode polarization power from gravitational lensing is rejected at 97.2%
confidence

Polarbear CMB B-Mode Power Spectrum 11
µ
K

C
M

B

�
D

ec
(d

eg
.)

�RA (deg.)RA (deg)�

-3 -2 -1 0 1 2 3

D
ec

 (d
eg

)
�

-3

-2

-1

0

1

2

3

-6

-4

-2

0

2

4

6

CMB
K!

RA (deg)�

-3 -2 -1 0 1 2 3

D
ec

 (d
eg

)
�

-3

-2

-1

0

1

2

3

-6

-4

-2

0

2

4

6

CMB
K!

RA (deg)�

-3 -2 -1 0 1 2 3

D
ec

 (d
eg

)
�

-3

-2

-1

0

1

2

3

-6

-4

-2

0

2

4

6

CMB
K!

Stokes Q� Stokes U�

�RA (deg.)

Fig. 6.— Polarbear CMB polarization maps of RA23 in equatorial coordinates. The left (right) panel shows Stokes Q (U), where the
polarization angle is defined with respect to the North Celestial Pole. These filtered maps are smoothed to 3.50 FWHM. The clearly visible
coherent vertical and horizontal patterns in the Q map and diagonal patterns in the U map are the expected signature of an E-mode signal.

and Fourier transformed single-day maps m̃X
ik for X 2

T , E, or B, and day i. This estimator is free of noise
bias (Hinshaw et al. 2003). The two-dimensional cross-
spectra are binned by Fourier mode k in rings of width
�k = 40 to form one-dimensional spectra,

C̃XY
` =

1P
i,j 6=i,k2bin`

wX
i wY

j

X

i,j 6=i,k2bin`

wX
i m̃X

ikwY
j m̃Y ⇤

jk .

(16)
The weights for the maps in the cross-spectrum proce-
dure, wX

i , are the sum of the pixel inverse noise covari-
ance estimate over all the map pixels, either the TT ele-
ment for temperature or the minimum eigenvalue of the
Q and U block for polarization.

The map making and pseudo-power spectrum proce-
dure are modeled as a linear function of the true sky
power spectra C`:

C̃` =
X

`0

K``0C`0 , (17)

K``0 = M``0F`0B
2
`0 . (18)

M``0 describes the mode mixing e↵ects of non uniform
sky coverage, and is calculated analytically. F`0 models
the transfer function of the time-domain filters and map
pixelization, and is calculated through Monte Carlo sim-
ulations. B`0 describes the smoothing due to the spatial
response of the detector.

5.3.1. Mode-mixing and filter transfer functions

M``0 is computed analytically, by co-adding the tem-
perature and polarization apodization windows from the
daily maps for the entire season. The resulting window
map is used to calculate M``0 (Louis et al. 2013).

We estimate the transfer function F` of the time do-
main filters from a suite of Monte Carlo simulations.
The input to the Monte Carlo simulations is a set of
10-resolution Gaussian realizations of a 10� ⇥ 10� patch

of the CMB from the best fit wmap-9 power spectra, C`
(Bennett et al. 2013). We use the pointing data from
observations to produce TOD from the simulated maps,
and apply the pseudo-power spectrum estimation proce-
dure. We then estimate the filter transfer function from

Fn
` = Fn�1

` +
C̃` �

P
`0 M``0F

n�1
`0 C`0B2

`0

C`B2
`

, (19)

with F 0
` = 1, and convergence achieved within the 10

iterations used to calculate F` = F 10
` .

To distinguish between leakage and transfer function
e↵ects, the filter transfer functions for E and B are com-
puted from separate TT +EE and TT +BB simulations.
The TE, TB, and EB spectra filter transfer functions are
estimated as the geometric mean of the respective auto
spectra. TT , EE, and BB transfer functions are shown
in Figure 7.

Polynomial filtering and scan-synchronous signal sub-
traction create leakage from CEE

` to CBB
` . The leak-

age transfer function is estimated from the Monte Carlo
simulations and leakage is subtracted in power spectrum
estimation. Equation 19, TT + EE simulations, with
the EE theory for Cl and BB pseudospectra and mode
mixing matrix are used to estimate FE!B

` . Before sub-
traction, the leakage is largest in the lowest bin centered
at ` = 700 where it is 9% of the CBB

` band power. The
power is subtracted in pseudospectrum space with an
amplitude of

C̃E!B
` =

FE!B
`

FE!E
`

C̃E
` . (20)

The uncertainty associated with this subtraction is cal-
culated via Monte Carlo simulations that include TT ,
EE, and BB power. The residual bias and its un-
certainty, including sample variance, is calculated as
`(` + 1)CBB

` /(2⇡) = (6.1 ± 39.9) ⇥ 10�4 µK2 at ` = 700.
This uncertainty is included in the presented limits on
ABB .

1.2 The Pipeline

In order to measure the CMB, a telescope is scanning the sky with ∼ 100 sensors, each taking a time stream
data. An output is created per hour-long observation, called Constant Elevation Scan (CES). There are

2

about ∼ 14 such observation per day, and after about 2 years of observation, we accumulate about ∼ 10,000
CES.

These data requires a lot of cleanup, partially due to the imperfection of the equipments, and partially
due to the uncontrollable factors like weather and atmospheric conditions. In the end, 4237 such inputs are
used for the analysis.

Since the correlation time scale is ∼ 20min, shorter than the observation time scale, and we can treat
each observation independently. Hence, it is a perfectly (embarrassingly) parallel problem.

In the current implementation of AnalysisBackend, the code is mainly written in Python with some
occasional C/C++ modules, and relies heavily on external libraries e.g. Numpy. All code is written in serial,
and in the end a trivial MPI process is run to start these individual independent processes.1

However, such a perfect parallel treatment is not without its problems:

1. Cori’s Haswell nodes has only 128 GB RAM, this limits the number of concurrent in-node processes
to about 16, which is significantly less than the 32 number of cores available.

2. Due to the MASTER algorithm (Hivon et al. 2001), in the past CMB analysis is mainly O(n3) which
enjoys high computational intensity. The MASTER algorithm improve the scaling to O(n), but this
decreases the computational intensity and therefore the pipeline is highly likely to be IO bounded. It
also means that it potentially will be speeded up by hyper-threading.

3. Ideally, we would want to run the pipeline using Cori’s Knights Landing (KNL) nodes. This means that
it is going to be slightly more RAM-limited, and have much more cores and hyper-threading available.
Currently, KNL can afford at most 272 threads to run concurrently, much bigger than the current 16
processes per node we are using.

4. SIMD vectorization is also important, and is currently unexplored in AnalysisBackend. It is because
Haswell CPU has 4-wide and KNL has 8-wide Fused multiply–add (FMA).

It is worth noting that the Intel Distribution for Python which is also used on NERSC has been optimized
for parallelization as well:

The Intel Distribution accelerates performance of Python packages with Intel® Performance
Libraries, including Intel® Math Kernel Library (Intel® MKL), Intel® Threading Building Blocks
(Intel® TBB), Intel® Data Analytics Acceleration Library (Intel® DAAL), and Intel® MPI. The
packages have been optimized to take advantage of parallelism through the use of threading,
multiple nodes, and vectorization. The release notes includes a full list of the packages included
in the distribution. From Anaconda & Intel� Python Distribution FAQ.

The all-included, out-of-the box distribution accelerates core Python packages including NumPy,
SciPy, pandas, scikit-learn, Jupyter, matplotlib, and mpi4py. It integrates the powerful Intel®
Math Kernel Library (Intel® MKL), Intel® Data Analytics Acceleration Library (Intel® DAAL)
and pyDAAL, Intel® MPI Library, and Intel® Threading Building Blocks (Intel® TBB). From
Intel® Distribution for Python* | Overview | Intel® Software.

Since most of the existing code heavily relies on Numpy, and from the description above one would expect
free parallelization from Intel’s Distribution for Python. This turn out not to be the case at least in our
study. See more in the benchmark of Polynomial Filter Array in the Appendix. More investigation is needed
to see what kind of parallelization can be expected from the libraries in Intel’s Distribution for Python.

2 Optimization and Parallelization

From the above limitation, we laid out the following requirements:
1MPI is used to avoid the Python start-up overhead only. i.e. There is no communication between processes at all.

3

https://www.continuum.io/sites/default/files/AnacondaIntelFAQFINAL.pdf
https://software.intel.com/en-us/intel-distribution-for-python#close

1. SIMD vectorization and OpenMP parallelization is necessary, for both Cori’s Haswell and KNL nodes,
and more so on the later one.

2. (non-trivial) MPI2 is not necessary however, because each CES is still independent, and in the fore-
seeable future the RAM needed for a single CES will not surpass the RAM available in 1 node on
Cori.

3. Written in Python. This has been mostly true in AnalysisBackend. The choice of Python can be
attributed to historical reasons, but also because of maintainability (e.g. in writing, packaging, dis-
tributing, testing) and readability.

2.1 The Proposal

Our proposal is then to write every module in Cython.
Cython as a language is a superset of Python, and as a compiler is a transpiler to C/C++. It supports

both SIMD vectorization and OpenMP parallelism. Many but not all C/C++ features are supported.
Cython is not without its limitation. Directive pragma and Intel intrinsics are not supported, SIMD

vectorization relies on the C/C++ compilers’ optimization, and obtaining the vectorization report is convo-
luted3. OpenMP support is limited, e.g. #pragma omp for can be used in Cython by prange, reduction is
implied by in-place operators, and as a result other kinds of reduction like max are not supported.

Fortunately, these limitations will not be important to POLARBEAR’s analysis, as shown in the demon-
stration below. One of the reason is that there are a lot of inherit parallelism in the pipeline. For example,
each channel from the data are usually independently processed, which is a trivial use case of prange.

3 Results, Benchmarks, and Discussions

As a proposal on parallelizing the whole pipeline, we focuses on 3 functions in the pipeline to demonstrate
different aspects of the difficulties involved and the potential speed gain from it. They are (more details will
be given below):

1. Ground template filter: was originally written in Python with Numpy and C with Weave4. This is a
testbed to see how to fully Cythonize a Python function, i.e. written in C-style with Cython syntax
without the use of Numpy at all.

2. Polynomial filter: was originally written in pure Python with Numpy. This is a testbed on the potential
speed gain on a function that is highly pythonic and heavily relies on Numpy that full Cythonization is
virtually impossible (without reinventing the wheels from Numpy or using similar libraries in C/C++).

3. Boundary distance function: was originally written in Python with Numpy and C with weave. This
is one of the major bottleneck of the whole pipeline, and is the testbed to see how much speed up we
could get from Cythonization in an actual application hotspot.

Ground template filter and boundary distance function are both rewritten completely Cythonic5 without
the using of Numpy functions6. For the polynomial filter, it is minimally Cythonized because of the heavy
reliance on Numpy’s functions. Since there is virtually no speed gain from the OpenMP parallelization in
the polynomial filter, it will be mentioned in the appendix. In the following 2 sections, we will focus on the
ground template filter and boundary distance function. All the codes can be found in GitHub - ickc/TAIL.

2trivial MPI refers to the use of MPI mentioned above that has no communication at all.
3typically Cython-tranpiled C++ code is on the order of 100 times longer than the original Cython code.
4Weave, formerly Scipy.weave, is a now deprecated tool to allow easy writing of C-modules in Python. Note that the Scipy

team has migrated their own Weave codebase using Cython.
5Cythonic is defined as oppose to Pythonic: Cythonic code is like writing C/C++ using Python syntax.
6except when creating and returning Numpy array as a Python object

4

https://github.com/ickc/TAIL

The following benchmarks are done on Cori’s Haswell nodes. Although we want to use the KNL nodes
to push the boundary of vectorization and OpenMP scaling, Cori’s KNL queue has been impenetrable on
the days near the submission of this report. In the near future we will profile it on KNL.

3.1 Ground Template Filter

The actual code for this filter can be found in ickc/TAIL/ground_template_filter_array.pyx · GitHub.

3.1.1 Description
First, we scan the sky in constant elevation with a sweeping azimuth:

0 2000 4000 6000 8000 10000 12000

Time

3.5

3.6

3.7

3.8

3.9

4.0
Azmuth

And there is a boolean mask that select the data and discard poor data:

0 2000 4000 6000 8000 10000 12000

Time

0.0

0.2

0.4

0.6

0.8

1.0

Mask

And finally the signal:

5

https://github.com/ickc/TAIL/blob/master/tail/timestream/ground_template_filter_array.pyx

0 2000 4000 6000 8000 10000 12000

Time

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15
Signal

The mask is for data selection. So the main focus here are the signal d(t) and the azimuth θ(t). These
2 equations can be considered as a set of parametric equations in time t . And the ground template filter is
basically to find the 〈d(θ)〉, the average signal as a function of θ.

In the algorithm, this is done through a given resolution n (say, 300 pixels), the range in θ is divided into
n bins, and the signal is averaged into these bins.

3.1.2 Optimization Procedures
3.1.2.1 Vectorization

The first step is to look at the HTML report which can be found in Cython: ground_template_filter_array.pyx,
and below we have an excerpt of it:

 061: ## add total signal and no. of hits
+062: for j in range(nTime):
+063: if mask[i, j]:
+064: k = pointing[j]
+065: bins_signal[nBin * i + k] += input_array[i, j]
+066: bins_hit[nBin * i + k] += 1
 067: # the following allows SIMD. But Intel vectorization report said it would be inefficient
 068: # TODO: try again on KNL
 069: # k = pointing[j]
 070: # bins_signal[nBin * i + k] += input_array[i, j] * mask[i, j]
 071: # bins_hit[nBin * i + k] += mask[i, j]
 072:
 073: ## average signal
 074: ## SIMD checked
+075: for k in range(nPix):
 076: # won't be 0 since it is initialized as EPSILON
 077: # if bins_hit[nBin * i + k] != 0:
+078: bins_signal[nBin * i + k] /= bins_hit[nBin * i + k]
 079:
 080: # substraction
+081: if groundmap:
 082: # no SIMD: report says vectorization here is inefficient
+083: for j in range(nTime):
+084: input_array[i, j] = bins_signal[nBin * i + pointing[j]]
 085: else:
 086: # no SIMD: report says vectorization here is inefficient
+087: for j in range(nTime):
+088: input_array[i, j] -= bins_signal[nBin * i + pointing[j]]
+089: free(bins_signal)
+090: free(bins_hit)
 091:
 092: @cython.boundscheck(False)
 093: @cython.wraparound(False)
 094: @cython.cdivision(True)
+095: cdef inline _ground_filter_lr(
 096: double[:, :] input_array,
 097: double[:] az,
 098: np.ndarray[np.uint8_t, cast=True, ndim=2] mask,
 099: bool groundmap,
 100: int num_threads,
 101: int nCh,
 102: int nTime,
 103: int nPix,
 104: Py_ssize_t* pointing):
 105: cdef Py_ssize_t i, j, k
 106: # the signal
 107: # cdef double[:, :] bins_signal = np.zeros((nCh, nBin))
 108: # last bin correspond to the az_max pixel, just in case it hasn't been masked
+109: cdef int nBin = nPix + 1
+110: cdef int size = nCh * nBin
+111: cdef double* bins_signal_l = <double*>calloc(size, sizeof(double))
+112: cdef double* bins_signal_r = <double*>calloc(size, sizeof(double))
 113: # number of hits of signals
 114: # the use of machine epsilon is to avoid special casing 0
+115: cdef double* bins_hit_l = <double*>malloc(size * sizeof(double))
+116: cdef double* bins_hit_r = <double*>malloc(size * sizeof(double))
 117: # SIMD checked
+118: for i in range(size):
+119: bins_hit_l[i] = EPSILON
+120: for i in range(size):
+121: bins_hit_r[i] = EPSILON
 122: # is the input_array right moving?
+123: cdef bool* isMovingRight = <bool*>calloc(nTime, sizeof(bool))
 124:
 125: # detect left vs. right
 126: # IO bound, OpenMP not used
 127: # SIMD failed because of vector dependence
 128: # If this were in C, add the following line...
 129: #pragma ivdep
+130: for j in range(nTime - 1):

The key to look for in these reports are the “yellow-ness”. More yellow means more Python interactions,
and if it is white as in above, it is transpiled into pure C/C++ and Python’s Global Interpreter Lock (GIL)
can be released, which is important for OpenMP parallelization.

The next step is to check for vectorization and see if there is anyway to rewrite it to trigger vectorization.
For example, from the same code above, if you click at the + sign in line 65 in the HTML version, you can
see the C/C++ code it is translated into.

From ickc/TAIL/tail/timestream/ground_template_filter_array.cpp, we can then find where this
piece of C/C++ code is in the generated .cpp file. Trace it back to the nearest for-loop, which is in line
2303.

6

https://ickc.github.io/TAIL/tail/timestream/ground_template_filter_array.html
https://ickc.github.io/TAIL/tail/timestream/ground_template_filter_array.cpp

Finally, you can go into the Intel vectorization report ground_template_filter_array.optrpt and find
the reference of line 2303, and it reads

remark #15344: loop was not vectorized: vector dependence prevents vectorization

In this case, we will replace the code from line 63-66 by 69-71. Repeating the whole exercise and the
report will say

loop was not vectorized: vectorization possible but seems inefficient.
Use vector always directive or -vec-threshold0 to override

In this instance, rewriting the code to remove the branching statement made vectorization possible, but
still inefficient and the compiler didn’t vectorize it. It is worth noting that the code in line 69-71 is slower
than the one in line 63-66. Without checking the report, one would write as in line 69-71 to hope for
vectorization but actually get a slower code.

In other instances of the code, such kind of optimization paid off. One such case is to use the Conditional
(ternary) Operator to rewrite an if-statement.

Another interesting instance in this particular problem is

for i in range(size):
bins_hit[i] = EPSILON

...
SIMD checked
for k in range(nPix):

won't be 0 since it is initialized as EPSILON
if bins_hit[nBin * i + k] != 0:
bins_signal[nBin * i + k] /= bins_hit[nBin * i + k]

In order to remove the special case of dividing by 0, bins_hit is declared to be double instead of int,
and initialized to be the machine epsilon rather than 0. In the worst case scenario it makes an error of the
order 10−16, but is going to speed up this part of the code a lot through SIMD vectorization. Since we know
that in our application such a small error is acceptable, this will be a good trade off for us.

Of all the vectorization effort, one feature we missed is the ability to control the alignment of the memory.
Numpy array are created in 16-bytes alignment, which will be provided as the input of the function. But in
order to fully optimized for vectorization, 64-bytes alignment is needed. Even worst, even if it is 64-bytes
aligned7), compiler hints through directive pragma is not support in Cython and therefore no speed up can
be done by alignment.

3.1.2.2 Locality

In this example, it is also worth mentioning locality is also important. It is because the computation is of
low intensity, the problem is IO bound and we want to minimize the time spent in IO.

From the description above, we see that the θ(t) is sweeping back and forth, and the signal d(t) is averaged
per bin in θ. i.e. as it is swept through, either you have the locality of d(t), or the locality of the bins of θ,
but not both.

Furthermore, this function has a key lr, when true, the averaged signaled is calculated separately when
θ is sweeping left or right. In the original version of the code, this is done in 2 passes, where each pass has
a mask to remove the signal that move in another direction (e.g. for left pass, right moving θ are removed
by a mask). This is going to be RAM inefficient and slow because the IO on the signal is twice as long and
require a mask as large as the original signal.

When such conflicts exists, the locality is prioritized towards the signal rather than the bins. Because
the total number of bins is much less than that of the signals, so the bins has a higher chance to stay in a

7which can be achieved by copying the data, malloc, and some pointer arithmetic, all available in Cython (but aligned_alloc
is not).

7

https://ickc.github.io/TAIL/build/temp.macosx-10.6-x86_64-3.5/tail/timestream/ground_template_filter_array.optrpt

higher level of cache (say L3), whereas the signal is typically larger than L3 cache. One such example is this
code:

for i in prange(nCh, nogil=True, schedule='guided', num_threads=num_threads):
calculate ground template
add total signal and no. of hits
for j in range(nTime):

if mask[i, j]:
k = pointing[j]
if isMovingRight[j]:

bins_signal_r[nBin * i + k] += input_array[i, j]
bins_hit_r[nBin * i + k] += 1

else:
bins_signal_l[nBin * i + k] += input_array[i, j]
bins_hit_l[nBin * i + k] += 1

In the if-statement above, priority of locality is given to the signal input_array. If we wanted to favor
the locality of the bins, the 2 branches should be split into their own for-loop.

3.1.2.3 OpenMP

The same example above also shows the use of OpenMP. The nogil is important here. Only region with
no “yellow-ness” in the Cython to C/C++ conversion can releases the GIL. So if one wants to use OpenMP
parallelization, then the content within the loop needs to be free of Python interaction.

This example also shows that the i-loop that runs through the nCh, stands for the number of channels,
are independent. This is often true in the filters and will be trivial to parallelized.

3.1.3 Benchmark
With number of channels 100, number of time-stream signal 10000, and number of bins 300, lr=True, the
ground template filter in the old pipeline takes 7.53ms to complete, and our code takes 1.96ms to complete.
i.e. a speed up of 3.84 times, just from Cythonization and SIMD without OpenMP parallelization yet.

As we add more numbers of concurrent threads, the scaling looks like the following, using number of
channels 50,000, number of time-stream signal 10,000, and number of bins 8,192, lr=True:

8

100 101 102

No. of threads

100

101

Ground Template (s)

It can be seen that this does not scale very well beyond 8 threads, and hyper-threading actually will make
it slower. The reason is that even for this unrealistically large no. of channels, the computation intensity
is still very low and the OpenMP overhead is relatively high when p is large — it is likely that all threads
are accessing the L3 cache where the bins mostly lived and the RAM where the signal mostly lived and are
congressed. i.e. in the roofline model we are on the way left side of the roof.

Fortunately, since we are starting 16 processes. When Haswell/KNL nodes are used, the number of
threads is 2/4 respectively (if hyperthreading is not used as it is shown to be not helping). In this region,

9

100 101

No. of threads

100

101

Ground Template (s)

we see that the strong scaling coefficient is 0.406, meaning that the time needed scales as 1
p0.406 . As

mentioned above, the low coefficient is explained by the low computational intensity.

3.2 Boundary Distance Function

The actual code for this filter can be found in ickc/TAIL/boundary_distance.pyx · GitHub.

3.2.1 Description
This function is much easier to be described, involving well-known algorithm in Computer Science: boundary
tracing algorithm and post-office problem.

The function takes a n ×n 2D array, which has 1 simply-connected region of True value, and elsewhere
False. It can be visualized as 1 single island of True value around a sea of False in a square map8.

What this function does is for every point in the island, find the distance to the closest point on the
boundary. A 2D array of these distances are returned as a Numpy array.

We implemented it by first using a Boundary tracing algorithm to detect the boundary first. After that,
it is a post-office problem — for every point inside the boundary, determine the closest point on the boundary.
Hence this is an O(n3) problem.

3.2.2 Optimization Procedures
The vectorization and OpenMP parallelization procedure is the same as that laid out in Ground
Template Filter and we are not repeating it here. The Cythonization report is in Cython: bound-
ary_distance.pyx (and you can see most Python interaction is avoided), and the generated .cpp code is in
ickc/TAIL/tail/timestream/boundary_distance.cpp, and the vectorization report is in here.

8Physically, the True island represent the map we have for the CMB. Since we are scanning for a curvilinear sky, the map
we made is not necessarily rectangular.

10

https://github.com/ickc/TAIL/blob/master/tail/timestream/boundary_distance.pyx
https://ickc.github.io/TAIL/tail/timestream/boundary_distance.html
https://ickc.github.io/TAIL/tail/timestream/boundary_distance.html
https://ickc.github.io/TAIL/tail/timestream/boundary_distance.cpp
https://ickc.github.io/TAIL/build/temp.macosx-10.6-x86_64-3.5/tail/timestream/boundary_distance.optrpt

One example that shows both SIMD vectorization and OpenMP parallelization is

for i in prange(x_min + 1, x_max, nogil=True, schedule='guided', num_threads=num_threads):
for j in range(y_min + 1, y_max):

if mask[i, j]:
loc = i * m + j
SIMD checked
for k in range(nBoundary):

distance_sq = (i - boundary_coordinate[2 * k])**2 + \
(j - boundary_coordinate[2 * k + 1])**2

distances_sq[loc] = distance_sq \
if distance_sq < distances_sq[loc] else distances_sq[loc]

This is the post office problem, where it is determining the distances of each points to the boundary, and
is the part that the function is going to spend the majority of time in because it is O(n3). In the innermost
k-loop, it is vectorized using the ternary conditional operator, without which the if-statement would have
prevented vectorization. In the outermost i-loop, OpenMP-for is used, where i represent the i-th row of
the pixels on the map, which are independent of each other.

Another (counter) example is

convert boundary from 1D indexing to 2D indexing
and obtain the smallest box that includes the boundary
Not vectorized, use the following if in C
#pragma ivdep
for k in range(nBoundary):

x = boundary[k] // m
y = boundary[k] % m
boundary_coordinate[2 * k] = x
boundary_coordinate[2 * k + 1] = y
x_min = x if x < x_min else x_min
y_min = y if y < y_min else y_min
x_max = x if x > x_max else x_max
y_max = y if y > y_max else y_max

Because of the apparent vector-dependance, it is not vectorized. If it were written in C/C++, we would
have used a #pragma ivdep at this point. Fortunately it is O(n) and is not the hotspot of the application.

It is worth mentioning that the boundary tracing algorithm is not parallelized nor anywhere has SIMD
vectorization in it. This part of the code is essentially having a class of object Turtle that walks down the
map and keep tracing the boundary until it goes back to the starting point.

Vectorization is impossible in the boundary tracing algorithm, but OpenMP parallelization is at least in
theory possible. We could have divided the map into p regions and starts “workers” to trace the boundaries
in parallel and later merge them together. However, it will be challenging to merge the individual boundaries
together to make it becomes one big boundary, while remains robust.

The reason we choose not to parallelize this region is because this algorithm is O(n) (where the input
mask is of size n×n), and since it is not optimizable, potential speed-up from even KNL is at most 68 times
(and in reality very much less because we are starting 16 processes at once), without even account for the
time to combine all those boundaries.

However, we need to stress that this possibility is not ruled out. If in the future this becomes a hotspot,
such parallelization scheme should be investigated. In fact, although we wrote this part of the code using
object-oriented programming, we used Cython’s Extension types such that they are not really Python classes
but are translated into structs and functions. i.e. All Python interaction is removed and GIL can be released,
which is the cornerstone of using OpenMP in Cython. A bonus of this design is that there is no Python
overhead and the algorithm is very fast.

11

3.2.3 Benchmark
We created a mask of 1024×1024 large, and an island of radius 128 in the middle. We run the benchmark
on the original AnalysisBackend algorithm at 583ms, and our algorithm at 119ms, i.e. a speed up of 4.90
times, just from Cythonization and SIMD without OpenMP parallelization yet.

In the strong scaling test, we changed the radius to 510, and the result is

100 101 102

No. of threads

10−1

100

101

Boundary Distance (s)

we see that it is almost perfectly parallelized with a strong scaling coefficient of 0.909, meaning that the
time needed scales as 1

p0.909 . This is close to ideal (1), and is expected because the rows of pixels are totally
independent and hence is perfectly parallel.

4 Conclusion

Speedup is achieved through

1. Cythonization
2. SIMD vectorization
3. OpenMP parallelization

It is hard to decouple the 1st and 2nd effect. For the combined effect of Cythonization and SIMD
vectorization, in the worst case scenario which involved minimal changes to the Python code hence remains
Pythonic, the Polynomial Filter Array in the appendix, has 3.23 speedup. In the best case scenario where
Python interaction is minimized without using Numpy functions, the Boundary Distance Function, a speedup
of 4.90 is achieved.

For the 3rd effect, Polynomial Filter Array which stays Pythonic and relies on Numpy has virtually 0
efficiency. More investigation is needed here, as mentioned in the appendix. For the Ground Template
Filter, the strong scaling coefficient is 0.406 because of low computational intensity, and fortunately is not
the hotspot of the application9 Lastly, in the Boundary Distance Function, high strong scaling coefficient is

9in actual data size, it finishes on the order of ms.

12

achieved at 0.909. This will be important since this is a hotspot for the application.
To give a very rough estimation on the potential speedup for the whole pipeline, we will give a factor of 4

for Cythonization and SIMD vectorization. We guesstimate the strong scaling to be ~0.5, with a huge grain
of salt that it varies a lot through these 3 different functions. From this preliminary study, hyper-threading
does not help and so we are not considering this. Since we use 16 process per node, for Cori’s Haswell nodes,
we would use 2 threads per process, and for KNL, we would use 4 threads per process. The overall estimated
factor of speed up will then be:

• Haswell nodes: ∼ 6
• KNL nodes: ∼ 8

For a job that would have required ∼ 220,000 NERSC hours on Haswell, it would becomes ∼ 40,000. It
should be emphasized that this is a very rough estimation though, and more detailed analysis is needed in
the future.

A More on Boundary Distance Function

The boundary distance function is actually part of a larger code called the pseudo-power spectrum. Boundary
distance function is needed for an apodization mask, which essentially filter the map such that the “island”
has a smooth transition to zero on the boundary.

This apodization mask might be created by an O(n) algorithm instead (whereas the boundary distance
function is O(n3)), essentially by walking through the boundary k-times, where k is the width of the apodiza-
tion mask.

This has not been done in this study, because we find it very hard to parallelized a boundary tracing
algorithm. One suggestion is made in Boundary Distance Function and might be investigated in the future.

However, this alternative proposal on the apodization mask might turns out to be more effective, even
when run in serial, because as we are making higher and higher resolution map, O(n) is always going to win
the O(n3) algorithm.

More investigation is needed in this comparison. And in fact a quick demo based on the implementation
of boundary distance function in this report is possible. Because a boundary tracing algorithm is already
implemented in this study, and the proposed apodization mask is basically an iteration of the boundary
tracing k times.

B Polynomial Filter Array

B.1 Description

The poly_filter_array code uses a Legendre polynomial to fix the gain of the data, as the gain drifts during
the scanning period. Unlike ground_template_filter_array , poly_filter_array relies heavily on Numpy
functions, which for pure Python code provides good speedup. However, it is very unfortunate when one is
trying to transition the code to Cython.

To transition the code to Cython, we rewrote the code in the Cython memoryview array style, similar
to the ground template filter. However, when it came time to parallelize, we ran into serious problems. To
parallelize Cython code, it is required that we release the GIL, which is not possible when code contains
Numpy calls. Unfortunately, this was almost the entire code, which meant that the few cases where we
actually could call prange resulted in no speedup whatsoever. For a future direction, we recommend rewriting
the code to eliminate the use of Numpy, which would enable the code to be reformatted in C-style and
parallelized, which is the maximum Cython speedup.

One more point of interest with this code is that it was written and compiled in a Jupyter notebook that
was run within NERSC. NERSC uses the Intel MKL distribution of Python and Numpy, which actually
already uses OpenMP to deliver thread-level parallelism and include specialized vectorization instructions.

13

This means that simply by compiling and running the code on NERSC, we may already be taking advantage
of parallelism that’s implicitly built into the Python framework.

In summary, when code contains significant amounts of Numpy operations, optimal conversion to Cython
and Cythonized parallelization is not possible. To fully implement code in Cython and to parallelize it, code
must be rewritten to eliminate Numpy calls.

B.2 Benchmark

For number of channels 10,000, number of time stream data point 10,000, and polynomial order 4:
In the original code, it took 1.14s and in the cythonized code, 353ms in serial. i.e. 3.23 times improve-

ments.
However, there is virtually no difference in timing when number of threads is increased. This is unexpected

because as mentioned in The Pipeline, parallelization should be built-in from the Numpy provided by Intel’s
Distribution for Python.

More investigation is needed here in the future, and perhaps requires a deeper understanding of what
kind of parallelism is provided in Intel’s Distribution of Python.

Because there is no parallelization scaling in this function (the coefficient is virtually 0), we decided not
to put this part in the main report but in the appendix.

C Packaging and Distributing

Our modules is built using setup.py. All the compiler args can be put in setup.py, including the -O flag
levels, -mtune, -march flags, etc. More investigation is needed on how to target different compilers at the
same time. For instance, Clang compiler does not recognize the -fopenmp flag.

Currently, Intel’s icpc compiler and GNU’s g++ compiler is supported. We found that g++ compiler does
not scale very well for OpenMP when there are too much threads than the number of jobs in prange. And
for our codes, generally the icpc compiler does better at optimizing for speed.

Packaging is going to be important for our pipeline. In fact one of the forte of Python is packaging
and distributing of the code. In the future we should investigate on using Conda build recipes to improve
packaging and distribution, and also docker and shifter for both ease of deployment and potential speedup10.
One potential challenge here might be the use of icpc compiler.

We should also mentioned that docstrings and comments are emphasized in TAIL, which is lacking
in AnalysisBackend. In the future, these docstrings can easily be turned into documentation through a
very popular Python library called Sphinx. We strongly believed that good documentation should play an
important role in distributing our code.

Continuous Integration is also employed using Travis. Python 2.7 and Python 3.6 are test against, and the
Cythonized C++ code is built using GNU’s g++ compiler. Intel’s icpc compiler for Continuous Integration
is possible11 but has been unreliable to the author and not used. However, every build is tested locally using
Intel’s compiler before pushing to guarantee the code is always in a working state.

D Intel TBB, MPI

In the situations that involve more complicated parallelization, MPI and Intel Threading Building Blocks
(TBB) might be beneficial. We did not try either approach here, but Intel has some nice articles on using
MPI and TBB in Python:

• Unleash the Parallel Performance of Python* Programs | Intel® Software
• Exploring MPI for Python* on Intel® Xeon Phi™ Processor | Intel® Software

10NERSC’s study has shown that Shifter can accelerate Python applications due to the huge metadata IO that Python needs.
See more in Shifter: User Defined Images and An Introduction to Python at NERSC.

11nemequ/icc-travis: Script to help install Intel C/C++ Compiler on Travis CI.

14

https://travis-ci.org/ickc/TAIL
https://software.intel.com/en-us/blogs/2016/04/04/unleash-parallel-performance-of-python-programs
https://software.intel.com/en-us/articles/exploring-mpi-for-python-on-intel-xeon-phi-processor
http://www.nersc.gov/research-and-development/user-defined-images/
https://www.nersc.gov/assets/Uploads/10-Python.pdf
https://github.com/nemequ/icc-travis

In particular, Intel TBB can becomes important if different levels of parallelization is applied where
over-subscription might arise. Currently, all 3 functions involved in this study has incorporate a key-value
function argument of numthreads default to be 4. If function composition is used, these numthreads should
be set properly to avoid oversubscription. One possible alternative will be setting numthreads with the
environment variables OMP_NUM_THREADS and uses Intel TBB to get around with oversubscription whenever
it arises.

E Numba

One of the options that we pursued for code speedup/parallelization was Numba. Numba is a module that
generates optimized machine code from a python codebase using the LLVM compiler structure. LLVM is
a single static assignment(SSA)-based compilation structure. It allows you to just-in-time compile Python
code (including Numpy) at import time, runtime, or statically. To test the speedup, we ran a nontrivial test
function; the Numba additions are in red (jit is just-in-time compiling).

import numpy as np
from numba import jit

@jit
def naive_convolve(f, g):

vmax = f.shape[0]
wmax = f.shape[1]
smax = g.shape[0]
tmax = g.shape[1]
smid = smax // 2
tmid = tmax // 2
xmax = vmax + 2*smid
ymax = wmax + 2*tmid
h = np.zeros([xmax, ymax], dtype=f.dtype)
for x in range(xmax):

for y in range(ymax):
s_from = max(smid - x, -smid)
s_to = min((xmax - x) - smid, smid + 1)
t_from = max(tmid - y, -tmid)
t_to = min((ymax - y) - tmid, tmid + 1)
value = 0
for s in range(s_from, s_to):

for t in range(t_from, t_to):
v = x - smid + s
w = y - tmid + t
value += g[smid - s, tmid - t] * f[v, w]

h[x, y] = value
return h

In normal python without Numba, this code takes 1.41s to run with a 100x100 and 8x8 array for f
and g. With Numba and jit, this code takes 2.8 ms to execute, a speedup of more than 40x, but times
depend on the machine used. It has been reported that Numba can speed code up up to 200x (https:
//en.wikipedia.org/wiki/Numba).

When we began looking into Numba, we were under the impression that there was an additional function
called prange, which uses as many CPUs as detected by the multiprocessing module and runs loops in
parallel. However, we then found out that this function had been removed and Numba no longer possesses

15

https://en.wikipedia.org/wiki/Numba
https://en.wikipedia.org/wiki/Numba

parallelization options. At this point, we abandoned this strategy, but it is worth mentioning because of the
incredible (non-parallel) speedup obtained for Python code with very minimal effort.

Reference

Collaboration TP, Ade PAR, Akiba Y et al (2014) A Measurement of the Cosmic Microwave Background
B-Mode Polarization Power Spectrum at Sub-Degree Scales with POLARBEAR. arXivorg 171.

Hivon E, Gorski KM, Netterfield CB et al (2001) MASTER of the CMB Anisotropy Power Spectrum: A
Fast Method for Statistical Analysis of Large and Complex CMB Data Sets. arXivorg 2–17.

16

	Contents
	Introduction
	The Physics
	The Pipeline

	Optimization and Parallelization
	The Proposal

	Results, Benchmarks, and Discussions
	Ground Template Filter
	Description
	Optimization Procedures
	Benchmark

	Boundary Distance Function
	Description
	Optimization Procedures
	Benchmark

	Conclusion
	More on Boundary Distance Function
	Polynomial Filter Array
	Description
	Benchmark

	Packaging and Distributing
	Intel TBB, MPI
	Numba
	Reference

